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Abstract A predictor–corrector explicit four-step method of sixth algebraic order is
investigated in this paper. More specifically, we investigate the results of the elim-
ination of the phase-lag and its first, second and third derivatives on the efficiency
of the proposed method. The resultant method is studied theoretically and computa-
tionally. The theoretical investigation of the new hybrid method consists of: (1) the
construction of the new method, (2) the definition (calculation) of the local truncation
error, (3) the comparative local truncation error analysis (with other known methods
of the same form), (4) the stability analysis using scalar test equation with frequency
different than the frequency of the phase-lag analysis. Finally, we will study compu-
tationally the new obtained method. This study is based on the application of the new
produced predictor–corrector explicit four-step method to the approximate solution of
the resonance problem of the radial time independent Schrödinger equation.
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1 Introduction

In this paper, we will investigate a new proposed predictor–corrector explicit four-step
method of sixth algebraic order with vanished phase-lag and its first, second and third
derivatives. The novelties of the new proposed method are:

1. The predictor and the corrector of the new scheme are based on optimal explicit
four-step method

2. The embedding form of the proposed predictor–corrector explicit four-step
method. It is easy for one to see that the left hand part of the method (combi-
nation of yn+ j , j = −2(1)2) is the same for the predictor and the corrector.

Based on the above proposed new algorithm, we will study the effective numerical
solution of problems of the form of the radial time independent Schrödinger equation:

q ′′(x) =
[
l(l + 1)/x2 + V (x) − k2

]
q(x), (1)

For the model described above, we have the following definitions:

– The function Q(x) = l(l + 1)/x2 + V (x) is called the effective potential. For the
effective potential, we have the following relation: Q(x) → 0 as x → ∞.

– k2 is a real number which denotes the energy,
– l is defined by user integer which denotes the angular momentum,
– V is defined by user function denotes the potential.

Since the above described problem belongs to the boundary value problems, we
need two boundary conditions. The first is given by the definition of the problem:

q(0) = 0 (2)

while the second boundary condition, for large values of x , is determined by physical
considerations.

As we mentioned above, generally the problems with models given by a form similar
to the radial Schrödinger equation belong to the category of the special second-order
initial or boundary value problems of the form:

q ′′(x) = f (x, q(x)), (3)

for which the solution has a periodic and/or oscillatory behavior.

Remark 1 The mathematical models which describe the above category of problems
consist of a system of second order ordinary differential equations of the form (3)
in which the first derivative q ′ does not appear explicitly. Problems for which their
description lead to models with the characteristic occur in applied sciences

– astronomy,
– astrophysics,
– quantum mechanics,
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Fig. 1 Main classes of the finite difference methods developed in the last decades

– quantum chemistry,
– celestial mechanics,
– electronics,
– physical chemistry,
– chemical physics, …, etc

For more details see [1–4].

Remark 2 Last decades much research was taken place for the approximate solution
of the above described problems. The aim and scope of the above mentioned research
was the construction of :

– effective,
– fast and,
– reliable

algorithms (see for example [5–109]).

In Fig. 1, we present the main classes of finite difference methods which was the
result of research and innovation which was done during the last decades.

In this paper, we will investigate a new methodology for the construction of efficient
numerical algorithms for the problems with models of the form (3) which have periodic
and/or oscillating solutions.

More specifically, we will investigate the case of predictor–corrector methods in
which the predictor is an explicit four-step method and the corrector is the correspond-
ing implicit four-step method. With this form, we can apply embedded form for the
above mentioned predictor–corrector methods when we apply them to real problems.

The new methodology is based on the vanishing of the phase-lag and its derivatives
in the whole method (when this is applied to the specific scalar test equation). The
investigation will examine how this elimination of the phase-lag and its derivatives of
the predictor–corrector method affects the efficiency of the resulting method.

We will finally investigate the effectiveness of the new produced predictor–corrector
method compared with other well known methods of the literature.
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Remark 3 The algorithms produced using the above mentioned methodology can be
applied effectively to the following categories of problems:

– problems with periodic solution and/or,
– problems with oscillating solution,
– problems the solutions of which contain the functions cos and sin
– problems the solutions of which contain combination of the the functions cos and

sin

In this paper, we have established the following aims and scopes:

– The calculation of the coefficients of the new predictor–corrector four-step method
in order to have
1. the highest possible algebraic order,
2. eliminated phase-lag,
3. eliminated first derivative of the phase-lag,
4. eliminated second derivative of the phase-lag,
5. eliminated third derivative of the phase-lag,

– The study of the local truncation error. During this study, we will investigate
the comparative local truncation error analysis of the new produced predictor–
corrector four-step method with other methods of the same form.

– The study of the stability with scalar test equation using frequency different than
the frequency of the scalar test equation for the phase-lag analysis.

– The study of the effectiveness of the new obtained predictor–corrector four-step
method using the approximate solution of the resonance problem of the radial time
independent Schrödinger equation.

The phase-lag and its derivatives will be based on the direct formula for the calcu-
lation of the phase-lag for any 2 m-method symmetric multistep method which was
developed by Simos and his coworkers in [26] and [29].

In Fig. 2, we present the flowchart of the presentation of the analysis of the new
proposed predictor–corrector method.

In Sect. 2, we present a description of the bibliography on the subject of this paper.
The phase-lag analysis of symmetric 2 m-methods is presented in Sect. 3. The develop-
ment of the new proposed explicit predictor–corrector four-step method is presented
in Sect. 4. In Sect. 5, we calculate the local truncation error (LTE) of the obtained
predictor–corrector method and we give a comparative local truncation error analysis
with other similar methods. The stability analysis of the new produced predictor–
corrector method is given in Sect. 6. We mention here that the frequency of the scalar
test equation of the stability analysis is not equal with the frequency of the scalar
test equation of the phase-lag analysis. Numerical experiments are given in Sect. 7.
Finally, in Sect. 8, we present some remarks and conclusions.

2 Description of the bibliography

In this section, we present the recent bibliography on the research of this paper:

– Phase-fitted methods and numerical methods with minimal phase-lag of Runge–
Kutta and Runge–Kutta Nyström type have been obtained in [5–12].
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Fig. 2 Flowchart of the
presentation of the analysis of
the new proposed hybrid type
method.

– In [13–18], exponentially and trigonometrically fitted Runge-Kutta and Runge-
Kutta Nyström methods are constructed.

– Multistep phase-fitted methods and multistep methods with minimal phase-lag are
obtained in [23–51].

– Symplectic integrators are investigated in [52–81].
– Exponentially and trigonometrically multistep methods have been produced in

[82–102].
– Nonlinear methods have been studied in [103] and [104]
– Review papers have been presented in [105–109]
– Special issues and Symposia in International Conferences have been developed

on this subject (see [110–114])

3 Phase-lag analysis of symmetric 2 m-step methods

The aim and scope of the present paper is the investigation of the numerical solution
of the initial or boundary value problem of the form:

q ′′ = f (x, q), (4)
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In order for the above mentioned problem to be solved using a multistep method
with m steps, we divide the interval [a, b] into equally spaced intervals using {xi }p

i=0 ⊂
[a, b] and h = |xi+1 − xi |, i = 0(1)p − 1.

In this paper, we will investigate symmetric multistep methods, i.e.,

ai = am−i , bi = bm−i , i = 0(1)
p

2
. (5)

If we apply a symmetric 2 m-step method, that is for i = −m(1)m, to the scalar
test equation

q ′′ = −w2 q, (6)

the following difference equation is obtained

Am(v) qn+m + · · · + A1(v) qn+1 + A0(v) qn

+ A1(v) qn−1 + · · · + Am(v) qn−m = 0, (7)

where v = w h, h is the step length and A0(v), A1(v), . . ., Am(v) are polynomials of
v.

The associated characteristic equation is given by:

Am(v) λm + · · · + A1(v) λ + A0(v) + A1(v) λ−1 + · · · + Am(v) λ−m = 0 (8)

Theorem 1 [26] and [29] The symmetric 2 m-step method with characteristic equa-
tion given by (8) has phase-lag order k and phase-lag constant c given by:

− c vk+2 + O
(
vk+4

)

= 2 Am (v) cos (m v) + · · · + 2 A j (v) cos ( j v) + · · · + A0 (v)

2 m2 Am (v) + · · · + 2 j2 A j (v) + · · · + 2 A1 (v)
(9)

Remark 4 The formula (9) gives us a direct method for the computation of the phase-
lag of any symmetric 2 m-step method.

Remark 5 For the method which will be studied in this paper—for the predictor–
corrector symmetric four-step method—the number m = 2 and the direct formula for
the calculation of the phase-lag is given by:

− c vk+2 + O
(
vk+4

)
= 2 A2(v) cos(2 v) + 2 A1(v) cos(v) + A0(v)

8 A2(v) + 2 A1(v)
(10)

where k is the phase-lag order and c is the phase-lag constant.
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Fig. 3 Flowchart of the construction of any method of the family

4 The new predictor–corrector method

We consider the following family of predictor–corrector explicit symmetric four-step
methods for the numerical solution of initial or boundary value problems of the form
q ′′ = f (x, q):

q̄n+2 = −a1 qn+1 − a0 qn − a1 qn−1 − qn−2

+ h2
(

b1 q ′′
n+1 + b0 q ′′

n + b1 q ′′
n−1

)

qn+2 + a1 qn+1 + a0 qn + a1 qn−1 + qn−2

= h2
[

b4
(
q̄ ′′

n+2 + q ′′
n−2

) + b3
(
q ′′

n+1 + q ′′
n−1

) + b2 q ′′
n

]
, (11)

where

a1 = − 1

10
, b0 = 5

4
, b1 = 53

40
(12)

and the coefficient a0 and bi , i = 2(1)4 are free parameters, h is the step size of the
integration, n is the number of steps, qn is the approximation of the solution on the
point xn , xn = x0 + n h and x0 is the initial value point.

In the flowchart of Fig. 3, we present the development of the new proposed method.
Based on the above flowchart and applying the above mentioned method (11) to

the scalar test equation (6), we get the difference equation (7) with m = 2 and A j (v) ,

j = 0, 1, 2 given by:
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A2 (v) = 1, A1 (v) = − 1

10
+ v2

(
b4

(
1

10
− 53 v2

40

)
+ b3

)

A0 (v) = a0 + v2
(

b4

(
−a0

5

4
v2

)
+ b2

)
(13)

We require the above method (11) to have vanished the phase-lag and its first,
second and third derivatives. Therefore, we obtain the following system of equations
[using the formula (10) and (13)]:

Phase − Lag = − T0

Tdenom
= 0 (14)

First Derivative of the Phase − Lag = T1

T 2
denom

= 0 (15)

Second Derivative of the Phase − Lag = T2

T 3
denom

= 0 (16)

Third Derivative of the Phase − Lag = T3

T 4
denom

= 0 (17)

where

Tdenom = 53 v4 b4 − 40 v2 b3 − 4 v2 b4 − 156

T0 = −53 cos (v) v4b4 − 25 v4b4 + 40 cos (v) v2b3

+ 4 cos (v) b4v
2 − 20 v2a0b4 + 20 v2b2 + 80 (cos (v))2

− 40 − 4 cos (v) + 20 a0

T1 = −24080 v3b4 + 624 sin (v) + 8480 sin (v) cos (v) v4b4

− 6400 sin (v) cos (v) v2b3 − 640 sin (v) cos (v) v2b4

+ 4240 sin (v) v6b3b4 − 320 sin (v) v4b3b4

− 24960 sin (v) cos (v) + 3200 vb3 + 320 b4v + 6240 vb2 − 200 v5b4
2

+ 4240 v3a0b4 − 2000 v5b3b4 − 2120 v5a0b4
2 + 2120 v5b2b4

+ 1280 cos (v) b4v − 608 sin (v) b4v
2 − 6400 va0b4 + 12800 cos (v) vb3

− 6080 sin (v) v2b3 + 8056 sin (v) v4b4 − 16 sin (v) v4b4
2

− 33920 cos (v) v3b4 − 2809 sin (v) v8b4
2 + 424 sin (v) v6b4

2

− 1600 sin (v) v4b3
2 − 1600 va0b3 + 16960 (cos (v))2 v3b4

− 6400 (cos (v))2 vb3 − 640 (cos (v))2 vb4

T2 = −3893760 + 310400 (cos (v))2 v4b4
2 + 512000 (cos (v))2 v4b3

2

− 5291520 (cos (v))2 v4b4 − 768000 (cos (v))2 v2b3
2

+ 898880 (cos (v))2 v8b4
2 − 7680 (cos (v))2 v2b4

2

+ 3993600 (cos (v))2 v2b3 − 7537920 (cos (v))2 v2b4

− 4630080 (cos (v))2 v6b4
2 + 76800 v2b3b4 − 192000 v2a0b3

2
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+ 748800 v2b2b3 − 76800 v2a0b4
2 − 1223664 cos (v) v4b4

− 1984320 v2a0b4 − 641600 v4b3b4 + 678400 v6b3b4

− 3968640 v4b2b4 + 4044960 v4a0b4
2 + 399360 sin (v) b4v

+ 3993600 sin (v) vb3 + 15360 cos (v) v2b4
2 − 10583040 sin (v) v3b4

+ 1536000 cos (v) v2b3
2 + 10240 sin (v) v3b4

2 + 923520 cos (v) v2b3

− 153600 (cos (v))2 v2b3b4 + 3155200 (cos (v))2 v4b3b4

− 1356800 (cos (v))2 v6b3b4 − 399360 sin (v) cos (v) vb4

− 3595520 sin (v) cos (v) v7b4
2 + 407040 sin (v) cos (v) v5b4

2

− 1024000 sin (v) cos (v) v3b3
2 − 10240 sin (v) cos (v) v3b4

2

+ 10583040 sin (v) cos (v) v3b4 + 1024000 sin (v) v3b3
2

− 605632 cos (v) v4b4
2 − 407040 sin (v) v5b4

2 + 492800 cos (v) v4b3
2

+ 8858208 cos (v) v6b4
2 + 16000 v6b3b4

2 − 97344 cos (v)

+ 7787520 (cos (v))2 + 80000 v6b3
2b4 − 1123600 v6a0b4

2 + 8480 v6a0b4
3

+ 318000 v8b3b4
2 − 337080 v8b2b4

2 + 337080 v8a0b4
3 + 64 cos (v) v6b4

3

+ 64000 cos (v) v6b3
3 + 3595520 sin (v) v7b4

2 + 865172 cos (v) v8b4
2

+ 33708 cos (v) v10b4
3 − 148877 cos (v) v12b4

3 − 2544 cos (v) v8b4
3

+ 74880 v2b2b4 − 8480 v6b2b4
2 + 15966912 cos (v) b4v

2

− 3993600 sin (v) cos (v) vb3 − 49920 b4 − 499200 b3

− 973440 b2 + 307200 cos (v) v2b3b4 + 204800 sin (v) v3b3b4

− 6007040 cos (v) v4b3b4 − 4070400 sin (v) v5b3b4

− 1305920 cos (v) v6b3b4 + 1920 cos (v) v6b3b4
2 + 19200 cos (v) v6b3

2b4

− 50880 cos (v) v8b3b4
2−254400 cos (v) v8b3

2b4+337080 cos (v) v10b3b4
2

− 787200 v2a0b3b4 + 763200 v4a0b3b4 − 84800 v6b2b3b4

+ 84800 v6a0b3b4
2 + 998400 b4a0 + 2645760 v4b4

+ 11069760 b4v
2 − 61600 v4b4

2 − 256000 v4b3
2 + 6449040 v6b4

2

+ 249600 a0b3 − 449440 v8b4
2 − 204800 sin (v) cos (v) v3b3b4

+ 4070400 sin (v) cos (v) v5b3b4 − 199680 cos (v) b4 + 800 v6b4
3

− 1996800 cos (v) b3 + 384000 v2b3
2 + 3840 v2b4

2 + 31800 v8b4
3

+ 998400 (cos (v))2 b3 + 99840 (cos (v))2 b4 − 1996800 v2b3

T3 = 491212800 va0b3b4 + 934502400 sin (v) cos (v) b3

+ 757186560 cos (v) v3b4
2 − 4952862720 (cos (v))2 v3b4

+ 95846400 sin (v) v2b3b4+23961600 v3b2b3b4−571687680 (cos (v))2 v11b4
3

+ 1537084800 (cos (v))2 v9b4
3 − 135951360 (cos (v))2 v7b4

3

+ 3365406720 (cos (v))2 v7b4
2 + 8032527360 (cos (v))2 v5b4

2

+ 6635520 (cos (v))2 v5b4
3 + 122880000 (cos (v))2 v5b3

3

− 122880000 (cos (v))2 v3b3
3 − 122880 (cos (v))2 v3b4

3

+ 958464000 (cos (v))2 v3b3
2 − 371404800 (cos (v))2 v3b4

2
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+ 479232000 (cos (v))2 vb3
2 + 4792320 (cos (v))2 vb4

2

− 344064000 v5b3
2b4 − 66969600 v5b3b4

2 + 18432000 v3b3
2b4

− 539328000 v9b3b4
2 + 325632000 v7b3

2b4 − 1682703360 cos (v) v7b4
2

− 118041600 sin (v) v8b3
2b4 + 113817600 sin (v) v4b3

2

+ 2393164800 v3b3b4 − 16636538880 cos (v) v5b4
2

− 3618201600 (cos (v))2 v3b3b4 + 9809920 sin (v) cos (v) v6b4
3

− 1809699840 sin (v) cos (v) v6b4
2 + 133939200 (cos (v))2 v5b3b4

2

− 3809894400 (cos (v))2 v5b3b4 − 3686400 (cos (v))2 v3b3b4
2

− 36864000 (cos (v))2 v3b3
2b4 + 688128000 (cos (v))2 v5b3

2b4

− 191692800 cos (v) vb3b4 + 1652541696 sin (v) v6b4
2

+ 95846400 (cos (v))2 v b3b4 + 1450792320 sin (v) cos (v) v10b4
3

+ 5393280 sin (v) v12b3b4
3 − 50880000 v9b3

2b4
2 − 10176000 v9b3b4

3

+ 1843200 v3b3b4
2 + 2025838080 sin (v) v8b3b4

2 − 934502400 v b3

+ 1904947200 cos (v) v5b3b4 − 206572800 sin (v) cos (v) v8b4
3

+ 841351680 sin (v) cos (v) v8b4
2 − 47923200 v b3b4

− 479232000 cos (v) v3b3
2 − 1320960000 cos (v) v5b3

2b4

− 24883200 v3a0b3b4
2−1682703360 v7b4

2−5529600 sin (v) cos (v) v4b3b4
2

− 2396160 vb4
2 − 15185664 sin (v) − 262348800 cos (v) v5b3b4

2

− 2476431360 sin (v) cos (v) v4b4 + 1869004800 (cos (v))2 v b3

+ 61440 v3b4
3 − 239616000 vb3

2 − 301616640 sin (v) v6b3b4

− 612218880 sin (v) v4b3b4 + 244108800 v3b4
2 + 55296000 sin (v) v4b3

2b4

+ 2429706240 sin (v) cos (v) + 10240 sin (v) v8b3b4
3 − 93450240 sin (v) b4

− 934502400 sin (v) b3 − 11397120 v7b4
3 − 2083154400 v9b4

3

− 508800 v9b4
4 − 6741600 v11b4

4 + 40960000 sin (v) cos (v) v6b3
3

− 184320 sin (v) cos (v) v4b4
3 + 285843840 v11b4

3 + 61440000 v3b3
3

− 3317760 v5b4
3 − 61440000 v5b3

3 + 93450240 sin (v) cos (v) b4

− 184320000 sin (v) cos (v) v4b3
3 − 952473600 v3a0b3b4

+ 2663331840 (cos (v))2 v b4 − 13568000 sin (v) v10b3
3b4

+ 667545600 v5a0b3b4
2 − 2082009600 sin (v) cos (v) v8b3b4

2

+ 989184000 sin (v) cos (v) v6b3
2b4 − 479232000 sin (v) cos (v) v2b3

2

+ 2476431360 cos (v) v3b4 + 196608000 sin (v) cos (v) v6b3b4
2

− 1269964800 sin (v) cos (v) v6b3b4 − 479232000 v3b3
2

+ 162816000 v5a0b3
2b4 + 325632000 cos (v) v7b3

2b4

+ 7523942400 cos (v) v3b3b4 + 1904947200 v5b3b4

− 53932800 v9a0b3b4
3 − 162816000 sin (v) cos (v) v8b3

2b4

+ 619107840 va0b4 + 5393280 v9b2b4
3 + 357304800 v9a0b4

3

+ 5529600 sin (v) v4b3b4
2 + 73728000 cos (v) v3b3

2b4
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+ 7443311616 sin (v) b4v
2 − 95281280 sin (v) cos (v) v12b4

3

− 5393280 v9a0b4
4 − 67416000 v11b3b4

3 − 23820320 sin (v) v14b3b4
3

+ 71460960 v11b2b4
3 + 2476431360 v3b4 − 651264000 (cos (v))2 v7b3

2b4

− 1424640000 (cos (v))2 v7b3b4
2 + 2103379200 v5a0b4

2

− 71460960 v11a0b4
4 − 9739264 sin (v) v6b4

3 + 29696000 sin (v) v6b3
3

− 323596800 v7a0b3b4
2 − 934502400 cos (v) v b3

+ 26966400 sin (v) v12b3
2b4

2 + 2653900800 cos (v) v7b3b4
2

+ 140175360 sin (v) v2b3 + 262133760 cos (v) v7b4
3

+ 203764224 sin (v) v8b4
3 − 2912371200 cos (v) v9b4

3

− 634982400 v5b2b3b4 + 1078656000 (cos (v))2 v9b3b4
2 − 3609515520 b4v

+ 256 sin (v) v8b4
4 + 2560000 sin (v) v8b3

4 − 1413578688 sin (v) v10b4
3

+ 285843840 cos (v) v11b4
3−13568 sin (v) v10b4

4−69078928 sin (v) v12b4
3

+ 269664 sin (v) v12b4
4 − 11755111680 v5b4

2 − 2382032 sin (v) v14b4
4

+ 7890481 sin (v) v16b4
4 − 46725120 v b2b4 + 47923200 va0b4

2

− 467251200 vb2b3 + 119808000 va0b3
2 − 62360064 sin (v) v4b4

2

− 5046312960 cos (v) b4v + 3095539200 v3b2b4 + 1198080 v3b2b4
2

+ 119808000 v3b2b3
2 − 3190786560 v3a0b4

2 − 1228800 v3a0b4
3

− 30720000 v3a0b3
3 + 65126400 v5a0b4

3 − 63498240 v5b2b4
2

− 4792320 sin (v) cos (v) v2b4
2+2103379200 v7b2b4

2−2135738880 v7a0b4
3

− 9584640 cos (v) vb4
2 − 81408000 v7b3b4

2 − 958464000 cos (v) vb3
2

+ 4792320 sin (v) v2b4
2 + 479232000 sin (v) v2b3

2

− 55296000 sin (v) cos (v) v4b3
2b4 − 967987200 sin (v) v6b3

2b4

+ 184320 sin (v) v4b4
3 + 184320000 sin (v) v4b3

3 + 245760 cos (v) v3b4
3

− 13086720 cos (v) v5b4
3 + 245760000 cos (v) v3b3

3

− 61440000 cos (v) v5b3
3 − 194488320 sin (v) v6b3b4

2

+ 1024000 sin (v) v8b3
3b4 + 1869004800 sin (v) cos (v) v2b3

− 407040 sin (v) v10b3b4
3 + 199821024 sin (v) v8b4

2

− 7242393600 sin (v) cos (v) v2b4 + 68290560 sin (v) cos (v) v4b4
2

+ 479232000 sin (v) cos (v) v4b3
2 − 185732352 sin (v) v4b4

−129024000 v3a0b3
2b4 + 156405120 sin (v) v10b3b4

2

+ 7372800 cos (v) v3b3b4
2 + 53932800 v9b2b3b4

2 + 153600 sin (v) v8b3
2b4

2

− 539328000 cos (v) v9b3b4
2 + 730828800 sin (v) cos (v) v4b3b4

− 95846400 sin (v) cos (v) v2b3b4 + 215731200 sin (v) cos (v) v10b3b4
2

− 4070400 sin (v) v10b3
2b4

2

Based on the above system of equations (14)-(17) and solving this system we obtain
the coefficients of the proposed predictor–corrector explicit four-step method:
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a0 = T4

T5
, b2 = T6

T7
,

b3 = T8

T9
, b4 = T10

T11
(18)

where

T4 = −9954 + 500 v5 sin (4 v) + 2000 v5 sin (2 v) − 7155 v2 cos (5 v)

− 5168 v3 sin (2 v) − 20772 v sin (4 v) + 1644 v3 sin (4 v) + 32088 v sin (2 v)

+ 12975 cos (v) v4 − 530 v4 cos (5 v) + 132135 v sin (v)

− 146755 v3 sin (v)+3710 v5 sin (v)−24360 v2 cos (2 v)+89760 v2 cos (3 v)

− 106845 cos (v) v2+3000 v4 cos (2 v)+6335 v4 cos (3 v)+5565 v sin (5 v)

− 69480 v sin (3 v) + 12000 v2 cos (4 v) − 265 v5 sin (5 v)

+ 3445 v5 sin (3 v) − 1325 v3 sin (5 v) + 30600 v3 sin (3 v)

+ 1250 v4 cos (4 v) − 900 cos (v) + 2904 v2 + 18000 cos (2 v) + 7750 v4

−8046 cos (4 v) + 10440 cos (3 v) − 9540 cos (5 v)

T5 = −9000 + 9540 cos (3 v) + 2915 v3 sin (3 v) + 265 v4 cos (3 v)

− 19875 v sin (3 v) + 6000 v2 cos (2 v) − 11925 v2 cos (3 v)

+ 24645 cos (v) v2 + 85065 v sin (v) + 9275 v3 sin (v) + 2915 cos (v) v4

+ 6000 v sin (2 v) − 1000 v3 sin (2 v) − 9540 cos (v) + 9000 cos (2 v)

T6 = −2266704 − 31800 v4 cos (8 v)−3008120 v5 sin (7 v)+3021000 v3 sin (8 v)

− 616560 v4 cos (7 v) − 1952255 sin (v) v9 − 20185 cos (v) v8

− 4891752 cos (6 v) − 13864488 cos (2 v) v6 − 109757576 v6

+ 3501225 v6 cos (5 v) + 710200 v5 sin (8 v) + 3470018 v5 sin (6 v)

− 12243000 v8 + 954000 v sin (8 v) − 80950576 v5 sin (4 v)

+ 126110074 v5 sin (2 v) − 89618940 v2 cos (5 v) − 274092168 v3 sin (2 v)

− 32106816 v sin (4 v) + 112812672 v3 sin (4 v) − 31631544 v sin (2 v)

− 190800 v6 cos (8 v) − 656905 v7 sin (7 v) − 170637540 cos (v) v4

+ 20848950 v4 cos (5 v) − 74462940 v sin (v) − 271536780 v3 sin (v)

+ 962914360 v5 sin (v) − 159597486 v2 cos (2 v) − 203935140 v2 cos (3 v)

+ 276584220 cos (v) v2 + 258190098 v4 cos (2 v) − 142974690 v4 cos (3 v)

− 1976760 v sin (5 v) − 16493040 v sin (3 v) − 12868812 v2 cos (4 v)

+ 7295840 v5 sin (5 v) − 384520240 v5 sin (3 v) + 159404250 v3 sin (5 v)

−228553890 v3 sin (3 v) − 254392956 v4 cos (4 v) − 2710800 cos (v)

+ 206492076 v2 + 4027752 cos (2 v) − 213838668 v4 + 841104 cos (4 v)

+ 6791040 cos (3 v) − 5896800 cos (5 v) + 16969860 v2 cos (7 v)

+ 1816560 cos (7 v) + 2289600 cos (8 v) + 14045 v9 sin (7 v)

− 42135 v9 sin (5 v) − 21200 v8 cos (8 v) + 715500 v8 cos (6 v)
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− 24106575 v7 sin (3 v) + 2088200 v8 cos (4 v) − 5803500 v8 cos (2 v)

− 2008435 v9 sin (3 v) − 395025 v8 cos (3 v) + 6427848 v6 cos (6 v)

− 7342600 v6 cos (4 v) + 651065 v7 sin (5 v) − 742000 v9 sin (4 v)

− 53000 v9 sin (6 v) − 2173000 v9 sin (2 v) − 64898842 v7 sin (2 v)

− 16260616 v7 sin (4 v) + 31800 v7 sin (8 v) + 1170318 v7 sin (6 v)

+ 911305 v8 cos (5 v) − 114495 v8 cos (7 v) + 30676392 v sin (6 v)

+ 58873455 sin (v) v7 + 27242345 cos (v) v6 + 2671200 v2 cos (8 v)

− 16601520 v3 sin (7 v) + 19848174 v4 cos (6 v) + 19117980 v sin (7 v)

− 144846685 v6 cos (3 v) − 11895432 v3 sin (6 v) + 734795 v6 cos (7 v)

− 36696978 v2 cos (6 v)

T7 = 5702270 sin (v) v9 + 29469780 cos (v) v8 + 64872000 cos (2 v) v6

− 15582000 v6 + 24059085 v6 cos (5 v) − 212000 v8 − 13356000 v5 sin (4 v)

+ 41976000 v5 sin (2 v) + 22896000 v3 sin (2 v) − 11448000 v3 sin (4 v)

− 95966640 cos (v) v4 − 23258520 v4 cos (5 v) + 28334880 v3 sin (v)

+ 503809830 v5 sin (v) + 125928000 v4 cos (2 v) + 119225160 v4 cos (3 v)

+ 33750135 v5 sin (5 v) − 211000275 v5 sin (3 v) − 6067440 v3 sin (5 v)

+ 667440 v3 sin (3 v) − 12402000 v4 cos (4 v) − 113526000 v4

+ 1713490 cos (v) v10 + 14045 v10 cos (5 v) + 294945 v10 cos (3 v)

+ 266855 v9 sin (5 v) + 4351710 v7 sin (3 v) + 1484000 v8 cos (4 v)

+ 6360000 v8 cos (2 v) + 3272485 v9 sin (3 v) − 11127010 v8 cos (3 v)

− 18762000 v6 cos (4 v) − 9522510 v7 sin (5 v) − 106000 v9 sin (4 v)

− 1060000 v9 sin (2 v) − 3180000 v7 sin (2 v) + 7950000 v7 sin (4 v)

− 2162930 v8 cos (5 v) + 105263340 sin (v) v7 + 121230810 cos (v) v6

− 105730215 v6 cos (3 v)

T8 = −19380 v + 30789 v2 sin (3 v) − 2120 v6 sin (2 v) + 18840 v cos (4 v)

− 22730 v4 sin (2 v) − 3405 v4 sin (4 v) + 53 v5 cos (3 v)

− 530 v6 sin (4 v) − 12479 v3 cos (3 v) + 3240 v2 sin (4 v)

+ 17040 v cos (3 v) + 540 v cos (2 v) + 35183 v3 cos (v) − 88800 v3 cos (2 v)

+ 45240 v2 sin (2 v) − 17040 cos (v) v + 583 v5 cos (v) + 9643 v4 sin (v)

− 46983 v2 sin (v) + 25300 v3 cos (4 v) + 8371 v4 sin (3 v)

+ 2915 v5 cos (4 v) − 9540 v5 cos (2 v) − 720 sin (2 v) + 360 sin (4 v)

+ 54 sin (v) − 18 sin (3 v) − 18815 v5 + 114740 v3

T9 = −19875 v4 sin (3 v) + 6000 v5 cos (2 v) + 9275 v6 sin (v)

+ 24645 v5 cos (v) + 85065 v4 sin (v) − 9540 v3 cos (v) + 9000 v3 cos (2 v)

+ 2915 cos (v) v7 + 265 v7 cos (3 v) + 2915 v6 sin (3 v) − 9000 v3

+ 9540 v3 cos (3 v)−11925 v5 cos (3 v)+6000 v4 sin (2 v)−1000 v6 sin (2 v)
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T10 = −240 v3 sin (v) − 80 v3 sin (3 v) − 1000 cos (v) v2

+ 4 v2 cos (2 v) + 40 v2 cos (3 v) + 720 v sin (v) − 240 v sin (3 v)

+ 20 v2 + 240 cos (v) + 12 cos (2 v) − 240 cos (3 v) − 12

T11 = 53 cos (2 v) v6 − 200 v5 sin (v) + 424 v5 sin (2 v) + 265 v6

+ 600 cos (v) v4 − 1113 v4 cos (2 v) − 600 v3 sin (v)

− 636 v3 sin (2 v) + 2385 v4

The formulae (18) can be subject to heavy cancelations for small values of |w|.
The following Taylor series expansions should be used in the above described cases
of possible cancellations:

a0 = −9

5
+ 31349 v8

13440000
− 3134167 v10

24192000000
+ 22573535749 v12

1117670400000000

− 87003316039 v14

670602240000000000
− 294315005972879 v16

4068320256000000000000

− 9882192843770741993 v18

373471799500800000000000000
+ · · ·

b2 = 661

400
− 31349 v2

560000
+ 4113931 v4

144000000
− 411203026699 v6

46569600000000

+ 15610274821489 v8

27941760000000000
− 43564232338357763 v10

508540032000000000000

+ 306364669720057073 v12

171003571200000000000000
− 2835570879535988410796599 v14

13659731066741760000000000000000

+ 429755005291287851273632889 v16

8195838640045056000000000000000000

+ 2826095406611374760469253259927 v18

263906004209450803200000000000000000000
+ · · ·

b3 = 317

300
+ 31349 v2

840000
− 2717999 v4

189000000
− 8371477613 v6

34927200000000

− 1589768766407 v8

20956320000000000
− 1526020314848017 v10

286053768000000000000

+ 120034441008931861 v12

1945165622400000000000000
+ 34784937597638432348867 v14

284577730557120000000000000000

+ 29472349929137160287708503 v16

1024479830005632000000000000000000

+ 1376920444683964220632068867011 v18

296894254735632153600000000000000000000
+ · · ·

b4 = 161

2400
− 31349 v2

3360000
+ 583417 v4

6048000000
− 2910518999 v6

279417600000000

+ 257387450539 v8

167650560000000000
+ 4511203337283911 v10

9153720576000000000000
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Fig. 4 Behavior of the coefficients of the new proposed method given by (18) for several values of v = w h.

+ 316379820544874759 v12

3458072217600000000000000
+ 20380985257920452088551 v14

1607027184322560000000000000000

+ 7100043582019690707850771 v16

5463892426696704000000000000000000

+ 321021435635816717776291510981 v18

4750308075770114457600000000000000000000
+ · · · (19)

Figure 4 shows the behavior of the coefficients b2, b3 and b4.
The proposed method is the method (11) with the coefficients given by (18)–(19).
The local truncation error of this new proposed method (mentioned as PC Meth)

is given by:
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LT EPC Meth = 31349 h8

13440000

(
q(8)

n + 4 w2 q(6)
n + 6 w4 q(4)

n + 4w6 q(2)
n + w8 qn

)

+ O
(

h10
)

(20)

where q( j)
n is the j-th derivative of qn .

5 Comparative error analysis

The following methods will be studied in this section:

5.1 Classical predictor–corrector explicit four-step method, i.e. the method (11) with
constant coefficients

LT EC L = 31349 h8

13440000
q(8)

n + O
(

h10
)

(21)

5.2 The predictor–corrector explicit four-step method with vanished phase-lag and
its first and second derivatives developed in Sect. 4

LT EPC Meth = 31349 h8

13440000

(
q(8)

n + 4 w2 q(6)
n + 6 w4 q(4)

n + 4w6 q(2)
n + w8 qn

)

+ O
(

h10
)

(22)

Our comparative Local Truncation Error Analysis is based on the Flowchart men-
tioned in the Fig. 5.

The Local Truncation Error formulae for the error analysis are produced using the
algorithm mentioned on the flowchart and the following formulae:

q(2)
n = (V (x) − Vc + G) q(x)

q(3)
n =

(
d

dx
g (x)

)
q (x) + (g (x) + G)

d

dx
q (x)

q(4)
n =

(
d2

dx2 g (x)

)
q (x) + 2

(
d

dx
g (x)

)
d

dx
q (x)

+ (g (x) + G)2 q (x)

q(5)
n =

(
d3

dx3 g (x)

)
q (x) + 3

(
d2

dx2 g (x)

)
d

dx
q (x)

+ 4 (g (x) + G) q (x)
d

dx
g (x) + (g (x) + G)2 d

dx
q (x)
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Fig. 5 Flowchart for the
comparative error analysis

q(6)
n =

(
d4

dx4 g (x)

)
q (x) + 4

(
d3

dx3 g (x)

)
d

dx
q (x)

+ 7 (g (x) + G) q (x)
d2

dx2 g (x) + 4

(
d

dx
g (x)

)2

q (x)

+ 6 (g (x) + G)

(
d

dx
q (x)

)
d

dx
g (x) + (g (x) + G)3 q (x)

q(7)
n =

(
d5

dx5
g (x)

)
q (x) + 5

(
d4

dx4 g (x)

)
d

dx
q (x)

+ 11 (g (x) + G) q (x)
d3

dx3 g (x) + 15

(
d

dx
g (x)

)
q (x)

d2

dx2 g (x)

+ 13 (g (x) + G)

(
d

dx
q (x)

)
d2

dx2 g (x) + 10

(
d

dx
g (x)

)2 d

dx
q (x)

+ 9 (g (x) + G)2 q (x)
d

dx
g (x) + (g (x) + G)3 d

dx
q (x)

q(8)
n =

(
d6

dx6 g (x)

)
q (x) + 6

(
d5

dx5
g (x)

)
d

dx
q (x)

+ 16 (g (x) + G) q (x)
d4

dx4 g (x) + 26

(
d

dx
g (x)

)
q (x)

d3

dx3 g (x)

+ 24 (g (x) + G)

(
d

dx
q (x)

)
d3

dx3 g (x) + 15

(
d2

dx2 g (x)

)2

q (x)

+ 48

(
d

dx
g (x)

) (
d

dx
q (x)

)
d2

dx2 g (x) + 22 (g (x) + G)2 q (x)
d2

dx2 g (x)
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+ 28 (g (x) + G) q (x)

(
d

dx
g (x)

)2

+ 12 (g (x) + G)2
(

d

dx
q (x)

)
d

dx
g (x) + (g (x) + G)4 q (x)

. . .

Two cases for the value of E are of interest in our study:

– The Energy is closed to the potential, i.e., G = Vc − E ≈ 0. Consequently, the
terms of the Local Truncation Error which have powers of G (i.e. G j , j �= 0) are
approximately equal to zero. Therefore, in this case we take into account only the
terms of the formulae of the Local Truncation Error which are free of G. As a
result of the above analysis all the numerical methods of the same family, and for
these values of G (i.e. approximately equal to zero), are of comparable accuracy.
This is because for this case the terms of the formulae of the Local Truncation
Error which are free of G are the same for the numerical methods of the same
family (cases of the classical methods (methods with constant coefficients) and
cases of the methods with vanished the phase-lag and its derivatives).

– G >> 0 or G << 0. Then |G| is a large number. Here the expressions of the
formulae of the Local Truncation Error are different for the numerical methods of
the same family.

The asymptotic expressions of the Local Truncation Errors (based on the method-
ology presented above) are given by :

5.3 Classical method

LT EC L = h8
(

31349 q (x)

13440000
G4 + · · ·

)
+ O

(
h10

)
(23)

5.4 The predictor–corrector explicit four-step method with vanished phase-lag and
its first and second derivatives developed in Sect. 4

LT EPC Meth = h8

⎡
⎣

⎛
⎝31349

(
d4

dx4 g (x)
)

q (x)

1120000
+

31349
(

d3

dx3 g (x)
)

d
dx q (x)

1680000

+ 31349 g (x) q (x) d2

dx2 g (x)

840000
+ 31349

( d
dx g (x)

)2
q (x)

1120000

⎞
⎠ G + · · ·

⎤
⎦

+ O
(
h10) (24)

Based on the above analysis, we have the following theorem:

Theorem 2 The Local Truncation Error Analysis leads us to the following conclu-
sions:
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Fig. 6 Flowchart for the stability analysis

– For the Classical Predictor–Corrector Explicit Four-Step Method the error
increases as the fourth power of G.

– For the Predictor–Corrector Explicit Four-Step Method with Vanished Phase-Lag
and its First and Second Derivatives developed in Sect. 4, the error increases as
the first power of G.

So, for the numerical solution of the time independent radial Schrödinger equa-
tion the New Proposed Predictor–Corrector Explicit Four-Step Method with Vanished
Phase-Lag and its First and Second Derivatives developed in Sect. 4 is the most effi-
cient, from theoretical point of view, especially for large values of |G| = |Vc − E |.

6 Stability analysis

In order to investigate the stability of the new proposed predictor–corrector symmetric
explicit four-step method we use the Flowchart mentioned in Fig. 6, in which the
procedure for the the interval of periodicity analysis is described. We must mention
that for this investigation we will use a scalar test equation with frequency different
than the frequency of the scalar test equation used for the phase-lag analysis.

We consider the the new obtained predictor–corrector symmetric explicit four-step
method (11) with the coefficients given by (12) and (18).

Application of the above described method to the scalar test equation:

q ′′ = −z2 q (25)

leads to the below mentioned difference equation:

A2 (s, v) (qn+2 + qn−2) + A1 (s, v) (qn+1 + qn−1) + A0 (s, v) qn = 0 (26)
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where

A2 (s, v) = 1, A1 (s, v) = 1

10

ST0

ST1
A0 (s, v) = 1

5

ST2

ST1
(27)

where s = z h and

ST0 = 16424 sin (v) cos (v) s2v3−11364 sin (v) cos (v) s2v−1060 (cos (v))3 s4v2

+ 5300 (cos (v))3 s2v4 + 12720 (cos (v))3 s2v2 − 106 v6 + 300 sin (v) s2v

+ 1060 sin (v) s4v3 − 1060 sin (v) s2v5 − 53 (cos (v))2 s4v2

+ 106 (cos (v))2 s2v4 − 424 sin (v) cos (v) v5 + 7420 cos (v) s4v2

− 18020 cos (v) s2v4 − 6360 sin (v) s4v + 38060 sin (v) s2v3

+ 24318 (cos (v))2 s2v2 + 636 sin (v) cos (v) v3 + 12420 cos (v) s2v2

+ 6360 (cos (v))2 sin (v) s4v − 29680 (cos (v))2 sin (v) s2v3

− 25440 (cos (v))2 sin (v) s2v + 2120 (cos (v))2 sin (v) s4v3

− 2120 (cos (v))2 sin (v) s2v5 − 300 cos (v) v4 + 300 v3 sin (v)

+ 100 v5 sin (v) − 1749 v4 + 159 s4 − 106 s4v2 + 212 s2v4

− 53 (cos (v))2 v6 − 159 (cos (v))2 s4 + 1113 (cos (v))2 v4

− 6360 cos (v) s4 − 12954 s2v2 + 6360 (cos (v))3 s4

ST1 =
(

53 (cos (v))2 v3 + 424 sin (v) cos (v) v2

− 1113 (cos (v))2 v − 100 v2 sin (v) + 106 v3

− 636 sin (v) cos (v) + 300 cos (v) v − 300 sin (v) + 1749 v
)
v3

ST2 = 12520 sin (v) cos (v) s2v3 − 300 sin (v) cos (v) s2v − 500 (cos (v))3 s4v2

− 5000 (cos (v))3 s2v4 − 18636 (cos (v))3 s2v2 − 14890 v6

+ 500 sin (v) s4v3 − 1000 sin (v) s2v5 − 25 (cos (v))2 s4v2

− 15850 (cos (v))2 s2v4 − 40080 sin (v) cos (v) v5 + 3500 cos (v) s4v2

− 1000 cos (v) s2v4 − 3000 sin (v) s4v − 1272 sin (v) s2v3

− 25290 (cos (v))2 s2v2 − 6660 sin (v) cos (v) v3 + 7272 cos (v) s2v2

+ 3000 (cos (v))2 sin (v) s4v − 3788 (cos (v))2 sin (v) s2v3

+ 11364 (cos (v))2 sin (v) s2v + 1000 (cos (v))2 sin (v) s4v3

− 2000 (cos (v))2 sin (v) s2v5 + 13272 cos (v) v4 − 3000 v3 sin (v)

+ 3272 v5 sin (v) + 17265 v4 + 75 s4 − 50 s4v2 + 16000 s2v4

+ 24885 (cos (v))2 v6 − 75 (cos (v))2 s4 − 26505 (cos (v))2 v4

− 3000 cos (v) s4 + 150 s2v2 + 5500 (cos (v))3 v6 − 15636 (cos (v))3 v4

− 5300 (cos (v))4 v6 + 3180 (cos (v))4 v4 + 3000 (cos (v))3 s4

+ 500 sin (v) v7 − 2500 cos (v) v6 + 1060 (cos (v))3 sin (v) s2v5

+ 4240 (cos (v))3 sin (v) s2v3 − 4240 cos (v) sin (v) s2v5

+ 25440 (cos (v))3 sin (v) s2v − 1060 sin (v) (cos (v))3 v7
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+ 1000 sin (v) (cos (v))2 v7 + 10600 sin (v) (cos (v))3 v5

+ 4240 sin (v) cos (v) v7 − 13212 sin (v) (cos (v))2 v5

+ 12720 sin (v) (cos (v))3 v3 + 5364 sin (v) (cos (v))2 v3

Remark 6 The frequency of the scalar test equation (6) for the phase-lag analysis, w,
is not equal with the frequency of the scalar test equation (25) for the stability analysis,
z, i.e. z �= w.

The associated characteristic equation of the difference equation (26) is equal to:

A2 (s, v)
(
λ4 + 1

)
+ A1 (s, v)

(
λ3 + λ

)
+ A0 (s, v) λ2 = 0 (28)

Definition 1 (see [19]) A symmetric 2 k-step method with the characteristic equation
given by (8) is said to have an interval of periodicity

(
0, v2

0

)
if, for all s ∈ (

0, s2
0

)
, the

roots λi , i = 1(1)4 satisfy

λ1,2 = e±i ζ(s), |λi | ≤ 1, i = 3, 4, . . . (29)

where ζ(s) is a real function of z h and s = z h.

Definition 2 (see [19]) A method is called P-stable if its interval of periodicity is
equal to (0,∞).

Definition 3 A method is called singularly almost P-stable if its interval of periodicity
is equal to (0,∞)− S1 only when the frequency of the phase fitting is the same as the
frequency of the scalar test equation, i.e. s = v.

In Fig. 7, we present the s−v plane for the first block layer (stages 1 and 2) of the
Hybrid type method developed in this paper. The stable area of the the s − v region
of the first block layer (stages 1 and 2) is the shadowed area, while the unstable area
is the white area.

Remark 7 Investigating the stability for these methods we can divide this study into
two categories of problems:

– Problems where the frequency of the scalar test equation for the phase-lag analysis
is not equal to the frequency of the scalar test equation for the stability analysis
(i.e. z �= w)

– Problems where the frequency of the scalar test equation for the phase-lag analysis
is equal to the frequency of the scalar test equation for the stability analysis (i.e.
z = w)

In the second case study, we can include problems, as for example the Schrödinger
equation and related problems.

For the first case study the investigation consists the development of the s−v plane
of the method (see Fig. 7 for our new produced predictor–corrector symmetric explicit

1 Where S is a set of distinct points.
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Fig. 7 s−v plane of the predictor–corrector symmetric explicit four-step method (11) with the coefficients
given by (12) and (18)

four-step method). For the second case study it is necessary to observe the surroundings
of the first diagonal of the s − v plane.

Investigating the second case study, i.e. investigating the case where z = w or s = v

(i.e. seeing the surroundings of the first diagonal of the s − v plane), we extract the
result that the interval of periodicity of the new obtained predictor–corrector symmetric
explicit four-step method developed in Sect. 4 is equal to: (0, 16).

From the above analysis we have the following theorem:

Theorem 3 The method produced in Sect. 4:

– is of predictor–corrector type
– is of sixth algebraic order,
– has the phase-lag and its first, second and third derivatives equal to zero
– has an interval of periodicity equals to: (0, 16) in the case where the frequency of

the scalar test equation for the phase-lag analysis is equal to the frequency of the
scalar test equation for the stability analysis

7 Numerical results

Our numerical tests are based on the numerical solution of the radial time-independent
Schrödinger equation (1).
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Fig. 8 The Woods–Saxon
potential
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The new developed predictor–corrector symmetric explicit four-step method
belonged to the category of the frequency dependent methods. Due to this, it is nec-
essary the definition of the value of parameter w, in order to be possible to be applied
to the numerical solution of the radial Schrödinger equation. The parameter w, based
on the mathematical model given by (1), is given by (for the case l = 0):

w =
√

|V (r) − k2| = √|V (r) − E | (30)

where V (r) is the potential and E is the energy.

7.1 Woods–Saxon potential

In order to be possible the numerical solution of the time-independent radial
Schrödinger equation (1), it is necessary the determination of the function of the
potential. For our numerical experiments, the well known Woods-Saxon potential is
used. This potential can be written as

V (r) = u0

1 + y
− u0 y

a (1 + y)2 (31)

with y = exp
[

r−X0
a

]
, u0 = −50, a = 0.6, and X0 = 7.0.

The behavior of Woods-Saxon potential is shown in Fig. 8.
Several methodologies for the determination of the frequency w, of the frequency

dependent methods, have been investigated (see [26] and references therein). For our
numerical experiments we used the below described methodology (see for details
[108]): In order to define the frequency w, we use the values of the potential on some
critical points, which are determined from the study of the specific potential.

Remark 8 The above mentioned methodology is well known applied to some poten-
tials, such as the Woods-Saxon potential.
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For the purpose of obtaining our numerical results, it is appropriate to choose v as
follows (see for details [1] and [82]):

w =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

√−50 + E, for r ∈ [0, 6.5 − 2h],√−37.5 + E, for r = 6.5 − h√−25 + E, for r = 6.5√−12.5 + E, for r = 6.5 + h√
E, for r ∈ [6.5 + 2h, 15]

(32)

For example, in the point of the integration region r = 6.5 − h, the value of w is
equal to:

√−37.5 + E . So, v = w h = √−37.5 + E h. In the point of the integration
region r = 6.5 − 3 h, the value of w is equal to:

√−50 + E , etc.

7.2 Radial Schrödinger equation: the resonance problem

The numerical example which we will use in this paper is the numerical solution of
the radial time independent Schrödinger equation (1) using Woods-Saxon potential
(31).

This is a boundary value problem which has an infinite interval of integration. For
the approximation of the solution it is necessary the infinite interval of integration to
be approximated by a finite one. For our numerical tests we consider the integration
interval r ∈ [0, 15]. For our numerical experiments we consider a large domain of
energies, i.e., E ∈ [1, 1000].
Remark 9 In the case of positive energies, E = k2 the potential decays faster than the
term l(l+1)

r2 .

Based on the above remark and studying this case, the Schrödinger equation effec-
tively reduces to:

q ′′ (r) +
(

k2 − l(l + 1)

r2

)
q (r) = 0 (33)

for r greater than some value R.
The above equation has linearly independent solutions kr jl (kr) and krnl (kr),

where jl (kr) and nl (kr) are the spherical Bessel and Neumann functions respectively.
Thus, the solution of equation (1) (when r → ∞), has the asymptotic form

q (r) ≈ Akr jl (kr) − Bkrnl (kr)

≈ AC

[
sin

(
kr − lπ

2

)
+ tan dl cos

(
kr − lπ

2

)]
(34)

where δl is the phase shift that may be calculated from the formula

tan δl = p (r2) S (r1) − p (r1) S (r2)

p (r1) C (r1) − p (r2) C (r2)
(35)
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for r1 and r2 distinct points in the asymptotic region (we choose r1 as the right hand
end point of the interval of integration and r2 = r1 − h) with S (r) = kr jl (kr) and
C (r) = −krnl (kr). For the initial-value problems (the radial Schrödinger equation
is treated as an initial-value problem) we need q j , j = 0(1)3 before starting a four-
step method. The initial condition defines the first value of q i.e. q0. Using high
order Runge-Kutta-Nyström methods (see [115] and [116]) we determine the values
qi , i = 1(1)3. Now we have all the necessary initial values and we can compute at r2
of the asymptotic region the phase shift δl .

For positive energies, we have the so-called resonance problem. This problem con-
sists either

– of finding the phase-shift δl or
– of finding those E , for E ∈ [1, 1000], at which δl = π

2 .

We solved the latter problem, known as the resonance problem.
The boundary conditions for this problem are:

q(0) = 0, q(r) = cos
(√

Er
)

for large r. (36)

The positive eigen energies of the Woods–Saxon potential resonance problem are
computed using:

– The eighth order multi-step method developed by Quinlan and Tremaine [20],
which is indicated as Method QT8.

– The tenth order multi-step method developed by Quinlan and Tremaine [20], which
is indicated as Method QT10.

– The twelfth order multi-step method developed by Quinlan and Tremaine [20],
which is indicated as Method QT12.

– The fourth algebraic order method of Chawla and Rao with minimal phase-lag
[25], which is indicated as Method MCR4

– The exponentially-fitted method of Raptis and Allison [83], which is indicated as
Method RA

– The hybrid sixth algebraic order method developed by Chawla and Rao with min-
imal phase-lag [24], which is indicated as Method MCR6

– The classical form of the fourth algebraic order four-step method developed in
Sect. 4, which is indicated as Method NMCL. 2

– The Phase-Fitted Method (Case 1) developed in [45], which is indicated as Method
NMPF1

– The Phase-Fitted Method (Case 2) developed in [45], which is indicated as Method
NMPF2

– The Method developed in [49] (Case 2), which is indicated as Method NMC2
– The Method developed in [49] (Case 1), which is indicated as Method NMC1
– The New Obtained Method developed in Sect. 4, which is indicated as Method

NMPCPL2DV

2 With the term classical we mean the method of Sect. 4 with constant coefficients.
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Fig. 9 Accuracy (digits) for several values of C PU Time (in seconds) for the eigenvalue E2 = 341.495874.
The nonexistence of a value of accuracy (digits) indicates that for this value of CPU, accuracy (digits) is
less than 0

We compare the computed eigenenergies via the above mentioned methods with
reference values. 3 In Figs. 9 and 10, we present the maximum absolute error Errmax =
|log10 (Err) | where

Err = |Ecalculated − Eaccurate| (37)

of the eigenenergies E2 = 341.495874 and E3 = 989.701916 respectively, for several
values of CPU time (in seconds). We note that the CPU time (in seconds) counts the
computational cost for each method.

8 Conclusions

A predictor–corrector explicit four-step method of sixth algebraic order was studied
in this paper. More specifically, we developed a method with vanishing the phase-lag
and its first, second and third derivatives. We studied the specific method as one block.
We investigated how this eliminations effects on the computational efficiency of the
proposed method.

3 The reference values are computed using the well known two-step method of Chawla and Rao [24] with
small step size for the integration.
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Fig. 10 Accuracy (digits) for several values of C PU Time (in Seconds) for the eigenvalue E3 =
989.701916. The nonexistence of a value of accuracy (digits) indicates that for this value of CPU, accuracy
(digits) is less than 0

We studied the obtained method via the comparative local truncation error analysis
and via the stability analysis (using scalar test equation with frequency different than
the frequency of the phase-lag analysis)

Finally, we examined the computational efficiency of the proposed method via
numerical experiments which was based on the numerical solution of the resonance
problem of the radial time independent Schrödinger equation.

The proposed method is very effective on any problem with oscillating and/or
periodical solutions or problems with solutions contain the functions cos and sin or
any combination of them.

From the numerical experiments described above, we can make the following
remarks:

1. The classical form of the sixth algebraic order four-step method developed in
Sect. 4, which is indicated as Method NMCL is more efficient than the fourth
algebraic order method of Chawla and Rao with minimal phase-lag [25], which is
indicated as Method MCR4. Both the above mentioned methods are more efficient
than the exponentially-fitted method of Raptis and Allison [83], which is indicated
as Method RA. The method Method NMCL is more efficient than the eighth alge-
braic order multistep method developed by Quinlan and Tremaine [20], which is
indicated as Method QT8, the Phase-Fitted Method (Case 1) developed in [45],
which is indicated as Method NMPF1 and the Phase-Fitted Method (Case 2) devel-
oped in [45], which is indicated as Method NMPF1.
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2. The tenth algebraic order multistep method developed by Quinlan and Tremaine
[20], which is indicated as Method QT10 is more efficient than the fourth algebraic
order method of Chawla and Rao with minimal phase-lag [25], which is indicated
as Method MCR4. The Method QT10 is also more efficient than the eighth order
multi-step method developed by Quinlan and Tremaine [20], which is indicated as
Method QT8. Finally, the Method QT10 is more efficient than the classical form of
the sixth algebraic order four-step method developed in Sect. 4, which is indicated
as Method NMCL.

3. The twelfth algebraic order multistep method developed by Quinlan and Tremaine
[20], which is indicated as Method QT12 is more efficient than the tenth order
multistep method developed by Quinlan and Tremaine [20], which is indicated as
Method QT10

4. The Method developed in [49] (Case 1), which is indicated as Method NMC1 is
more efficient than the twelfth algebraic order multistep method developed by
Quinlan and Tremaine [20], which is indicated as Method QT12

5. Finally, the predictor–corrector explicit four-step method of sixth algebraic order
with vanished phase-lag and its first, second and third derivatives (obtained in
Sect. 4), which is indicated as Method NMPCPL2DV , is the most efficient one.

All computations were carried out on a IBM PC-AT compatible 80486 using double
precision arithmetic with 16 significant digits accuracy (IEEE standard).
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